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Executive Summary

With the growth of mobile and sensor devices, embedded systems, and communication technolo-
gies, we are moving towards an era of pervasive computing. This project investigates some of the
security challenges of pervasive computing and suggests possible solutions.

Pervasive computing uses numerous, casually accessible, often invisible computing and sensor
devices, that are frequently mobile or embedded in the environment and that are interconnected to
each other with wired or wireless technology. Being embedded in the environment and strongly in-
terconnected, allows pervasive computing to provide novel services and functionalities that use the
knowledge of the surrounding physical spaces. However, it also brings novel security challenges
to this new paradigm that can have very serious consequences. Thus, we need to understand the
major security and privacy challenges and address these before pervasive computing technology
can be widely deployed.

Pervasive computing applications present some unique constraints that preclude the use of tra-
ditional security policies and mechanisms from protecting such applications. First, pervasive com-
puting applications typically involve many disparate entities, belonging to different organizations
and interacting in complex and subtle ways. Second, the applications are very dynamic in nature
with the entities and their interactions potentially changing at any given time. Third, pervasive
computing applications use contextual information to provide better services; such information
are often used by security mechanisms as well and, hence, must be adequately protected. Fourth,
pervasive systems often involve devices with various computation and communication capabili-
ties. Many of these are severely resource constrained, preventing execution of standard security
mechanisms on them. The objective of this work is to address some of the security challenges that
arise because of these constraints. This work focuses on four major aspects of security in pervasive
computing that we summarize below.

Policy and Trust Models for Pervasive Computing Applications

Traditional access control models, such as, Discretionary Access Control (DAC), Mandatory
Access Control, and Role-Based Access Control (RBAC), do not use contextual information,
namely, space and time, for authorization. Towards this end, we propose a number of increas-
ingly refined spatio-temporal RBAC models where the access decisions depend on the role of the
user, her location, the object’s location, and the time of access. The models that we develop have
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a very sophisticated set features that allow them to express many different spatio-temporal access
control constraints. However, they can also interact in many subtle yet complex ways. We show
how these features can be formally analyzed to study their interactions. We propose using an au-
tomated tool called Alloy, that has embedded SAT-solvers. We have used this model to specify the
access control policies of a real-world system — the Dengue Decision Support System that has been
developed at Colorado State University. Further, to accommodate the dynamic nature of pervasive
computing applications, we propose a graph-theoretic framework to represent the spatio-temporal
access control model. This framework allows us to reason about security of the access control
configuration changes during application execution.

Pervasive computing applications involve interaction among various entities not all of which
are equally trusted. The nature of interactions between entities depend on the trust relationship
between them. Towards this end, we developed a new model of trust to characterize and quantify
these trust relationships. Our model is based on subjective logic and allows one to reason about the
uncertainty that arises in these interactions within pervasive computing applications. We demon-
strate the use of this trust model for providing trust-based access control, finding a reliable path for
propagating sensor data to processing nodes, and giving sensitive personal data to recipients over
an untrusted network.

Designing Secure Pervasive Computing Applications

Pervasive computing applications are inherently complex. They must satisfy functional and
non-functional requirements, such as, security. Security cannot be added as an afterthought but
must be addressed from the very early stages of design. We demonstrate how aspect-oriented
methodology can be used for designing secure applications. In this approach, the application is de-
composed into modules on the basis of functionality and the security mechanisms are represented
as aspects. We demonstrate how to methodically integrate the security aspects with the functional
modules resulting in a design where security requirements have been adequately addressed. Often
times, the same security requirement can be satisfied by different security solutions. The solutions
may differ with respect to the amount of protection offered, time-to-market, budget and resource
constraints. Trade-off analysis must be done to determine which solution best meets the project
goal. We propose a new approach to do trade-off analysis that uses Bayesian Belief Networks.

The Unified Modeling Language (UML) is the de facto software specification language used
in the industry. We thus use UML for specifying the application and its security constraints. The
models must be formally analyzed to provide assurance of correct behavior. Moreover, the analysis
must be automated to the extent possible so as to reduce human errors. UML does not have much
tool support for automated analysis. Towards this end, we propose a new tool and methodology
by which UML specifications can be automatically converted into Alloy. We show how the re-
sulting specification can be evaluated by the Alloy Analyzer. We also show how existing tools for
analyzing UML designs, such as, OCLE and USE, can be enhanced to support our analysis.




Security Management in Pervasive Computing Environments

Pervasive computing applications typically involve cooperation among a number of entities
spanning multiple organizations. Thus, a security breach can have very far reaching consequences.
Moreover, the resource constraints in pervasive environments preclude the use of strong security
mechanisms in such applications. Towards this end, we propose a model that can evaluate the
chances of an attack occurring. In the event that an attack caused by a malicious worm occurs,
it is important to identify the source of attack. The existing practices of fending off such mali-
cious worms are all based on filtering techniques that use signatures derived from the worm code.
This may not be fast enough in a pervasive environment. We develop an automatic distributed
monitoring system to trace rapidly spreading worms back to their origins.

Pervasive computing applications typically involve information flow over a complex network
of devices. The choice of security mechanisms in pervasive environments is influenced by a num-
ber of factors, the most important among which are the heterogeneity of the computing devices,
resource constraints of these devices, the cost of deploying security mechanisms on these devices,
and the attack coverage provided by them. An optimal set of security measures is often difficult to
define because of the conflict between the level of security achievable by a mechanism and these

- other factors. We investigate the problem of selecting a subset of security hardening measures so
as to be within a fixed budget and yet minimize the residual damage to the system caused by not
plugging all security holes. We refine this model to integrate the attackers perceptions about cost
to attack. In a related work, we show how workflow profiles can be used to capture the contexts
in which a communication channel can be used in a pervasive environment. We formulate a set
of constrained multi-objective optimization problems that minimize the residual damage and the
maintenance cost incurred to keep the workflow secure and running,

Controlled Data Dissemination in Pervasive Computing Environments

Pervasive computing environments involve disseminating data to various entities. We need to
limit the disclosure of sensitive data. Specifically, we would like to prevent the linking of sensitive
data to any specific individual. Thus, in the k-anonymity privacy model, information pertaining to
an individual is often suppressed or generalized such that he cannot be distinguished from & other
individuals. Suppressing or generalizing data causes loss of information, which makes the data
less useful. We demonstrate how multi-objective optimization can be used to perform a privacy-
utility trade-off and give an insight as to whether better privacy is achievable with the same (or
nearly same) data utility. Existing privacy models, such as, k-anonymity and /-diversity, provide
a measure of the worst-case privacy but do not capture the privacy-bias that arises because of the
anonymization. Towards this end, we propose the use of property vectors to represent privacy and
other measurable properties of an anonymization and show how different anonymizations can be
compared.

Data availability is also very important in pervasive computing environments. Data access in



a pervasive environment can often be modeled by a push-pull based broadcast architecture. In
many of these models, the timeliness of servicing the data request becomes critical. Data begin to
degrade in utility the later it is provided from a deadline. Thus proper scheduling of the data request
is critical to ensure timely availability. We investigate this problem of data broadcast scheduling in
an environment where the time criticality is specified by a soft deadline that is directly related to
the data utility. Our experiments reveal that the broadcast schedule generated using heuristics can
be improved by hybridizing them with local search techniques. Our experiments further illustrate
that an evolution strategy based search technique does even better. The work assumes that each
request sent by a client is for one data item only, and that multiple requests sent by a client are
handled independently from each other. This assumption is eliminated in our subsequent works
where each client requires an ordered set of data items, and the client can start processing as soon
as it receives the first data item but cannot complete until it gets all the requested data items. Here
again, evolution strategies are used to trade-off between the running time of the real-time scheduler
and the quality of schedules generated.

The work done as part of this project has been published in various peer-reviewed journals and
conferences. The work also resulted in 3 Ph.D. dissertations. The dissertations and papers result-
ing from this work are listed below.
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Chapter 1

Introduction

In order to win our nation’s wars in the new millennium the U.S. Air Force plans to transform
itself into a net-centric, knowledge-based force. Pervasive computing is an emerging paradigm that
has the potential to act as an enabler for this goal. Pervasive computing uses numerous, casually
accessible, often invisible computing and sensor devices, that are frequently mobile or embedded in
the environment and that are interconnected to each other with wireless or wired technology. Being
embedded in the environment and strongly interconnected, allow pervasive computing devices to
exploit knowledge about the operating environment in a net-centric manner. Thus they provide a
rich new set of services and functionalities that are not possible through conventional means.

Although pervasive computing technology looks promising, one critical challenge needs to be
addressed before it can be widely deployed — security. The very knowledge that enables a perva-
sive computing application to provide better services and functionalities may easily be misused,
causing security breaches. The problem is serious because pervasive computing applications in-
volve interactions between a large number of entities that can span different organizational bound-
aries. Unlike traditional applications, these applications do not usually have well-defined security
perimeter and are dynamic in nature. Moreover, these applications use knowledge of surrounding
physical spaces. This requires security policies to use contextual information that, in turn, must
be adequately protected from security breaches. Uncontrolled disclosure of information or uncon-
strained interactions among entities can lead to very serious consequences. Traditional security
policies and mechanisms rarely address these issues and are thus inadequate for securing pervasive
computing applications. Our work focuses on understanding the security challenges involved in
pervasive computing applications and proposing solutions to some of the problems.

In subsequent paragraphs we summarize the various aspects related to security of pervasive
computing environments that we investigated in this project. Details about these works can be
found in our publications. We highlight some of the more important contributions in the remaining
chapters of this report.

Our first task focussed on access control models for pervasive computing applications. Al-
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though a lot of research appears in extending traditional access control models for novel applica-
tions, we found the modcls not expressive enough to meet the requirements of pervasive computing
applications. Our first contribution involves extending existing access control models to incorpo-
rate the notion of location and time. Our models allow the application to specify various types of
spatio-temporal constraints that may arise in pervasive computing applications. The various fea-
tures of the models may interact resulting in conflicts and inconsistencies. Towards this end, we
show how the models can be formally analyzed. We use the Alloy Analyzer, which has an embed-
ded SAT solver, to understand the subtleties involved with feature interactions. We demonstrate
the applicability of this model in a real-world — the Dengue Decision Support system that is being
designed at Colorado State University to be deployed in Mexico. An application using our access
control model must be analyzed to provide assurance that correct policies have been specified.
Towards this end, we show how such analysis can be done using two techniques: one using UML
and Alloy and the other using Coloured Petri Nets (CPNs).

Pervasive computing applications are dynamic in nature — the entities, the resources, and the
access patterns may change during the course of application. In the face of such dynamism, it
is essential to ensure that access control breaches do not occur. Since the required analysis must
be done in real-time, it is equally important to minimize the verification time. To address this
important problem, we formalize the semantics of our spatio-temporal model using graph theory
and provide incremental analysis techniques. We achieve very good complexity results. In addi-
tion, one side effect of this work is the development of a new and efficient common predecessor
detecting algorithm in a dynamic graph, the results of which can be used in various application
domains.

Pervasive computing environments often involve interactions with different types of entities,
not all of which are equally trustworthy. The nature of interactions between entities depend on
the trust relationship between them. Towards this end, we model and quantify trust relationships
within pervasive applications. In the model that we propose, the trust relationship between a truster
and trustee is associated with a context and depends on the experience, knowledge, and recommen-
dation that a truster has with respect to the trustee in the given context. Experience quantifies the
past interactions that the truster had with the trustee, knowledge assesses the verifiable properties
of the trustee, and recommendation measures how much other entities trust the trustee with respect
to the given context. The absence of one or more of these values in a given context precludes com-
puting the trust value in that given context. To overcome this problem, we formalize the notion of
contexts and capture the relationships between different contexts in the form of a context graph.
This allows one to extrapolate trust values from related contexts when all the information needed
to compute trust is not available. It also helps resolve the semantic mismatches that occur when
various sources use different terminology to represent contexts. We demonstrate the use of this
trust model for providing trust-based access control in pervasive computing systems and also for

14




finding a reliable path for propagating sensor data to processing nodes.

Security management is an important task in pervasive computing environments as some de-
vices, specially sensor nodes, have limited computation and communication capabilities. For secu-
rity management of these applications it is necessary to impose and maintain some secured struc-
ture within the sensor network if one is involved in the application. Clustering is a key technique
that simplifies network management in such large-scale sensor networks. A secure backbone, built
by a cooperating hierarchy of clusters in the form of a cluster tree, can further enhance upper
layer functions, such as secure routing, secure session key distribution between applications, se-
cure broadcasting, and secure query delivery. We investigate the design of such a secure backbone
for sensor networks based on the cluster tree approach. We integrate the Hierarchical Hop-ahead
Clustering algorithm with a secret key pre-distribution scheme to build such a secure backbone.
The key pre-distribution scheme based on Random Block Merging in Combinatorial Design has
very low computational cost and communication overhead. The protocol ensures that at least one
common key exist between any pair of nodes.

The rich connectivity among computing elements in pervasive environments and abundance
of low capability devices may cause irreparable damage by an attack. In order to address this
problem, we propose a model that evaluates the chances of a successful attack. This allows one to
put appropriate security controls where and when needed. In spite of security controls, it is possible
for fast spreading worms to wreck havoc. Typically, we pfotect against such malicious worms
using filtering techniques based on signatures derived from the worm code. However, worms can
be designed to spread so rapidly that by the time a signature is developed and distributed the
damage is done, thus rendering any signature-based mediation futile. We formulate an automatic
distributed monitoring system to trace rapidly spreading worms back to their origins. It works
by correlating anomalous events across a network and establishing a causal relationship between
them. We show that even with less than perfect deployment (about 20%) of this system, it can very
rapidly and accurately narrow down the worm origin to a small set of possibilities. Appropriate
action can then be taken to respond to such attacks.

Pervasive computing applications typically involve information flow over a complex network
of devices. Effective security mechanisms need to be deployed to protect these applications. The
choice of security mechanisms in pervasive environments is influenced by a number of factors, the
most important among which are the heterogeneity of the computing devices, resource constraints
of these devices, the cost of deploying security mechanisms on these devices, and the attack cov-
erage provided by them. An optimal set of security measures is often difficult to define because
of the conflict between the level of security achievable by a mechanism and these other factors.
As a first step, we investigate the problem of selecting a subset of security hardening measures so
as to be within a fixed budget and yet minimize the residual damage to the system caused by not
plugging all security holes. We formulate the problem as a multi-objective optimization problem
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and develop a systematic approach to solve the problem using non-dominated sorting genetic algo-
rithm on an attack tree model of the system. We believe that an attacker’s perceived gains through
a specific attack strategy can (and should) influence the security administrator’s decision to employ
a particular defense strategy. Thus we refine the security provisioning problem as a payoff prob-
lem to maximize the return on investment under the scenario that an attacker is actively engaged
In maximizing its return on attacks. Subsequently, we show how workflow profiles can be used to
capture the contexts in which a communication channel can be used in a pervasive environment.
We formulate a set of constrained multi-objective optimization problems that minimize the residual
damage and the maintenance cost incurred to keep the workflow secure and running.

Pervasive computing applications often involve sharing sensitive data across organizational
boundaries. For instance, one may want to prevent disclosing the identity of an individual. One
well-known model preventing identity disclosure is the k-anonymity model. The idea is to make
a tuple indistinguishable from k& — 1 other tuples by generalizing and/or suppressing attributes.
Unfortunately, such transformations result in a considerable loss of information. The information
loss 1s proportional to the value of k. Studies have focussed on minimizing the information loss
for some given value of k. However, owing to the presence of outliers, a specified k value may
not be obtainable all the time. Further, an exhaustive analysis is required to determine a & value
that fits the loss constraint acceptable to a data requester. We investigate the problem of finding
an optimal value of k for a given data set. Specifically, we develop a methodology to analyze
the trade-off of the generalization losses involved with variations in k. Such types of analysis can
reveal, for example, that it is possible to provide a higher level of privacy for a higher fraction of
the data set without compromising much on its information content. It can also identify ways of
examining if the level of privacy required by a human subject is achievable within the acceptable
limits of perturbing data quality. We use multi-objective evolutionary optimization for exploring
the trade-offs involved with minimizing information loss and maximizing privacy.

Privacy models, such as k-anonymity, offer an aggregate or scalar notion of the privacy property
that holds collectively on the entire anonymized data set. However, they fail to give an accurate
measure of privacy with respect to the individual tuples. For example, two anonymizations achiev-
ing the same value of k in the k-anonymity model will be considered equally good with respect
to privacy protection. However, it is possible that in one anonymization a majority of individuals
have a higher probability of privacy breach than the other. We, therefore, reject the notion that
all anonymizations satisfying a particular privacy property, such as k-anonymity, are equally good.
The scalar or aggregate value used in the privacy models is often biased towards a fraction of the
data set, resulting in higher privacy for some individuals and minimal for others. To better compare
anonymization algorithms, there is a need to formalize and measure this bias. Towards this end,
we propose the use of property vector to represent privacy and other measurable properties of an
anonymization. We show how anonymizations can be compared using quality index functions that
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quantify the effectiveness of property vectors. We also propose some preference based techniques
when comparisons must be made across multiple properties induced by anonymizations.

Data availability is also very important in pervasive computing applications. Data access in
a pervasive environment can be modeled by a push-pull based broadcast architecture, specifically
characterized by the time critical nature of the data requests. We investigate the problem of data
broadcast scheduling in an environment where the time criticality is specified by a soft deadline
that is directly related to the data utility. Our experiments reveal that the broadcast schedule gen-
erated using heuristics can be improved by hybridizing them with local search techniques. Our
experiments further illustrate that an evolution strategy based search technique does even better.

Pervasive computing applications are very complex. Security issues cannot be added as an
afterthought in such applications. We demonstrate how to design such applications using an aspect-
oriented methodology. In our approach, the application is decomposed into modules on the basis
of functionality — we refer to this as the primary model. We model each security concemn that is
of interest as an aspect. The aspect is then methodically composed with our primary model. The
result of the composition is a model that represents the application in which the security concemn
has been addressed. We show how to verify resulting model to ensure that the important properties
of aspects are preserved in it. We also demonstrate how to do trade-offs among different security
aspects all of which satisfy the same security property by using Bayesian Belief Networks.

Since the Unified Modeling Language (UML) is the de facto specification language in the soft-
ware industry, we use it to for modeling the aspects and primary model. However, UML does not
have much tool support for automated analysis. Towards this end, we show how existirig tools for
UML analysis, such as OCLE and USE, can be extended to support behavioral analysis. We also
demonstrate an alternative approach that involves converting the UML specification automatically
to Alloy using UML2Alloy and verify the resulting specification using the Alloy Analyzer.

The rest of the report highlights some of our more important contributions. It is organized as
follows. Chapter 2 presents our spatio-temporal role-based access control model that can be used
for pervasive computing applications. Chapter 3 demonstrates the use of this model for real-world
applications and shows how to provide assurance that no access control breach occurs. Chapter
4 refines the model and expresses the semantics using graph-theory. Chapter 5 proposes a trust
model, based on subjective logic, that can be used for pervasive computing applications. Chap-
ter 6 describes how risk estimation and security provisioning can be done in the face of resource
constraints. Chapter 7 shows how location information, captured by pervasive computing applica-
tions, can be disseminated in a careful and controlled manner. Chapter 8 provides a methodology
for designing secure pervasive computing applications. Chapter 9 concludes this report and gives
some future directions.
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Chépter 2

Spatio-Temporal Role-Based Access
Control Model

Pervasive computing applications use the knowledge of the surrounding context to provide better
applications and services. Context information can be also used to provide better security for such
applications. For example, access to a system need to be enabled only when a user enters a room
and it to be disabled when he leaves the room. Traditional access control models, such as, DAC,
BLP, or RBAC, do not take into account such environmental factors while making access deci-
sions. Towards this end, we propose a spatio-temporal access control model for use in pervasive
computing applications.

We choose to base our model on RBAC primarily because the latter is policy-neutral, simplifies
access management, and widely used by commercial applications. We illustrate how each com-
ponent of RBAC can be related with time and location, and explain how they impact each entity
and relationship in RBAC. We also demonstrate how spatio-temporal information can be used for
making access decisions. The various features supported by our model are specified using logical
constraints. These features often interact in subtle ways resulting in inconsistencies and conflicts.
Consequently, it is important to analyze and understand these interactions before such models can
be widely deployed.

Manual analysis is often not rigorous, frequently tedious and error-prone. Analyzers based on
theorem proving are hard to use, require expertise, and need manual intervention. Model checkers
are automated but are limited by the size of the system they can verify. Considenng these, we
advocate the use of Alloy [24] for checking access control models. Alloy is a modeling language
capable of expressing complex structural constraints and behavior. It supports automated analysis.
Moreover, it has been successfully used in the modeling and analysis of real-world systems [15,
48]. We demonstrate how Alloy can be used for analyzing the interaction of the different features
of our access control model.

The rest of the chapter is organized as follows. Section 2.1 describes the highlights of our
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model. Section 2.2 illustrates our analysis techniques using ‘Alloy. Section 2.3 concludes this
chapter with directions for future work.

2.1 Our Model

We briefly describe how the different entities of core RBAC, namely, Users, Roles, Sessions, Per-
missions, Objects and Operations, can be associated with location and time. This forms the basis
of our new authorization model.

Users and Objects

Users in our model can be human users or other entities such as sensor devices. For the rest
of this discussion we refer to a user as a human user although all the concepts presented here
applies equally to other entities. We assume that each valid user, interested in doing some location-
sensitive operation, carries a locating device which is able to track her or its location. The location
of a user changes with time. The relation UserLocation(u,t) gives the location of the user at any
given time instant #. Since a user can be associated with only one location at any given point of
time, we have the following constraint:

UserLocation(u,t) = I; AUserLocation(u,t) = ;<> (; C 1;) vV (I; C ;)

We define a similar function UserLocations(u,d) that gives the location of the user during the time
interval d. We define a function ObjLocations(o,d) in the same manner which gives the location
of an object at any given time.

Roles

We have three types of relations with roles. These are user-role assignment, user-role activation,
and permission-role assignment. We begin by focusing on user-role assignment. In our model, a
user must satisfy spatial and temporal constraints before roles can be assigned. We capture this
with the concept of role allocation. A role is said to be allocated when it satisfies the temporal and
spatial constraints needed for role assignment. A role can be assigned once it has been allocated.
RoleAllocLoc(r) gives the set of locations where the role can be allocated. RoledllocDur(r) gives
the time interval where the role can be allocated. Some role s can be allocated anywhere, in such
cases RoleAllocLoc(s) = universe. Similarly, if role p can be assigned at any time, we specify
RoleAlloecDur(p) = always.

Some roles can be activated only if the user is in some specific locations at a given time. We
borrow the concept of role-enabling [4, 29] to describe this. A role is said to be enabled if it
satisfies the temporal and location constraints needed to activate it. A role can be activated only
if it has been enabled. RoleEnableLoc(r) gives the location where role » can be activated and
RoleEnableDur(r) gives the time interval when the role can be activated.
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The predicate UserRoleAssign(u,r,d,l) states that the user u is assigned to role r during the
time interval d and location /. For this predicate to hold, the location of the user when the role was
assigned must be in one of the locations where the role allocation can take place. Moreover, the
time of role assignment must be in the interval when role allocation can take place.

UserRoleAssign(u,r,d,l) = (UserLocation(u,d) = )\
(I C RoleAllocLoc(r)) A (d C RoleAllocDur(r))

The predicate UserRoleActivate(u,r,d,l) is true if the user u activated role r for the interval d at
location /. This predicate implies that the location of the user during the role activation must be
a subset of the allowable locations for the activated role, all time instances when the role remains
activated must belong to the duration when the role can be activated, and the role can be activated
only if it is assigned.

UserRoleActivate(u,r,d,l) =
(I C RoleEnableLoc(r)) N(d C RoleEnableDur(r)) AUserRoleAssign(u.r,d,l)

The additional constraints imposed upon the model necessitates changing the preconditions of the
functions AssignRole and ActivateRole.
Permissions

The goal of our model is to provide better security than their traditional counterparts. This
happens because the time and location of a user and an object are taken into account before making
the access decisions. Our model also allows us to model real-world requirements where access
decision is contingent upon the time and location associated with the user and the object.

Permissions are associated with roles, objects, and operations. We associate three additional
entities with permission to deal with spatial and temporal constraints: user location, object location,
and time. We define three functions to retrieve the values of these entities. PermRoleLoc(p,r)
specifies the allowable locations that a user playing the role » must be in for him to get permission
p. PermObjLoc(p,o) specifies the allowable locations that the object 0 must be in so that the
user has permission to operate on the object 0. PermDur(p) specifies the allowable time when the
permission can be invoked.

We define another predicate which we term PermRoleAcquire(p,r,d,l). This predicate is true if
role » has permission p for duration 4 at location /. Note that, for this predicate to be true, the time
interval d must be contained in the duration where the permission can be invoked and the role can
be enabled. Similarly, the location / must be contained in the places where the permission can be
invoked and role can be enabled.

PermRoleAcquire(p,r,d,l) = (I C (PermRoleLoc(p,r) N RoleEnableLoc(r)))
A(d C (PermDur(p) N RoleEnableDur(p)))
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The predicate PermUserAcquire(u,o, p,d,!) means that user # can acquire the permission p on
object o for duration d at location /. This is possible only when the permission p is assigned some
role r which can be activated during 4 and at location /, the user location and object location match
those specified in the permission, the duration 4 matches that specified in the permission.

PermRoleAcquire(p,r,d,l) A UserRoleActivate(u,r,d,l)
N(ObjectLocation(o,d) C PermObjectLoc(p,0)) = PermUserAcquire(u,o,p,d,!l)

Impact of Time and Location on Role-Hierarchy
Organization structure is reflected in RBAC in the form of a role hierarchy [45] which is a

transitive, anti-symmetric relation among roles. Senior roles can inherit the permissions of junior
roles, or a senior role can activate a junior role, or do both depending on the nature of the hierarchy.
Joshi et al. [29] identify two basic types of hierarchy. The first is the permission inheritance
hierarchy where a senior role x inherits the permission of a junior role y. The second is the role
activation hierarchy where a user assigned to a senior role can activate a junior role. Each of these
hierarchies may be constrained by location and temporal constraints. Consequently, we have a
number of different hierarchical relationships in our model one of which is described below.
[Unrestricted Permission Inheritance Hierarchy] A senior role inherits the junior roles permis-
sions but not the spatial and temporal constraints associated with it. If x and y are roles such that
x >y, that is, senior role x has an unrestricted permission-inheritance relation over junior role y,
then x inherits y’s permissions but not the locations and time associated with it.

(x > y) A PermRoleAcquire(p,y,d,l) = PermRoleAcquire(p,x,always, universe)

We define the other hierarchies, namely, unrestricted activation hierarchy, location restricted
permission inheritance hierarchy, location restricted activation hierarchy, time restricted permis-
sion inheritance hierarchy, time restricted activation hierarchy, time location restricted permission
inheritance hierarchy, and time location restricted activation hierarchy, in a similar manner. The
hierarchies differ with respect to the spatio-temporal constraints imposed on the corresponding
hierarchical relationship.

Impact of Time and Location on Separation Of Duties

Separation of duties (SoD) enables the prevention of the fraud that may be caused by the user
[46] when she performs an action that require two or more steps. SoD can be either static or
dynamic. Static Separation of Duty (SSoD) comes in two varieties. First one is with respect to
user role assignment. The second one is with respect to permission role assignment. In this case,
the SSoD constraint is specified as a relation between roles. The idea is that the same user cannot
be assigned to the same role. Due to the presence of temporal and spatial constraints, we can
have different flavors of separation of duties — some that are constrained by temporal and spatial
constraints and others that are not. One example of such a constraint is as follows:
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[Weak Form of SSoD - User Role Assignment] Let x and y be two roles such that x # y. x,y €
SSOD,,(ROLES) if the following condition holds:

UserRoleAssign(u,x,d,l) = — UserRoleAssign(u,y,d,!)

The above definition says that a user u assigned to role x during time d and location / cannot be
assigned to role y at the same time and location if x and y are related by SSOD,,.

We have other forms of SSoD constraints that we do not elaborate here. These include strong
temporal form of SSoD — user role assignment, strong spatial form of SSoD — user role assignment,
strong form of SSoD — user role assignment, weak form of SSoD — permission role assignment,
strong temporal form of SSoD — user role assignment, strong spatial form of SSoD — user role
assignment, and strong form of SSoD — permission role assignment. These differ with respect to
the influence of spatio-temporal constraints on the relationships. We have various flavors of DSoD
constraints as well that are identified in our publications [42, 43, 50, 51, 52].

2.2 Model Analysis

We use Alloy to analyze the interaction of the various features of the access control model. Alloy
is supported by an automated constraint solver called Alloy Analyzer that searches instances of the
model to check for satisfaction of system properties. The model is automatically translated into
a Boolean expression, which is analyzed by SAT solvers embedded within the Alloy Analyzer.
A user-specified scope on the model elements bounds the domain, making it possible to create
finite Boolean formulae that can be evaluated by the SAT-solver. When a property does not hold, a
counter example is produced that demonstrates how the property has been violated.

An Alloy model consists of signature declarations, fields, facts and predicates. Each signature
consists of a set of atzoms which are the basic entities in Alloy. Atoms are indivisible (they cannot
be divided into smaller parts), immutable (their properties do not change) and uninterpreted (they
do not have any inherent properties). Each field belongs to a signature and represents a relation
between two or more signatures. A relation denotes a set of tuples of atoms. Facts are statements
that define constraints on the elements of the model. Predicates are parameterized constraints that
can be invoked from within facts or other predicates.

The basic entities in the access control model, such as, User, Time, Location, Role, Permission
and Object are represented as signatures. For instance, the declarations shown below define a set
named User and a set named Role that represent the set of all users and the set of all roles in the
system respectively. Inside the Role signature body, we have four relations, namely, RoleAllocLoc,
RoleAllocDur, RoleEnableLoc, and RoleEnableDur which relates Role to other signatures.

sig User(}
sig Role{




RoleAllocLoc: Location,
RoleAllocDur: Time,
RoleEnableLoc: Location,
RoleEnableDur: Time)

The different relationships between the components in our model are also expressed as signa-
tures. For instance, RoleEnable has a field called member that maps to a cartesian product of Role,
Time and Location. Similarly, RoleHierarchy has a field RHmember that represents a relationship
between Role and Role. Different types of role hierarchy are modeled as the subsignatures of
RoleHierarchy.

sig RoleEnable { member: Role -> Time -> Location)

sig RoleHierarchy { RHmember: Role -> Role)

sig UPIH, TPIH, LPIH, TLPIH, UAH, TAH, LAH, TLAH extends
RoleHierarchy({)

The various invariants are represented as facts in Alloy. For instance, the fact URActivate
states that for user u to activate role r during the time interval d and location /, this user has to be
assigned to role » in location / during time d. Moreover, the location of the user must be a subset
of the locations where the role is enabled, and the time must be in the time interval when role » can
be enabled. This is specified in Alloy as shown below. Other invariants are modeled in a similar
manner.

fact URActivate(

all u: User, r: Role, d: Time, l: Location, uras: UserRoleAssignment,
urac: UserRoleActivate |

({u->r->d-»>1) in urac.member) => (((u->r->d->1) in uras.member) &&
(1 in r.RoleEnableLoc) && (d in r.RoleEnableDur))

)

We use Alloy’s fact feature to represent the properties of the different hierarchies. The fact
UPIHFact represents the Unrestricted Permission Inheritance Hierarchy’s property. The fact states
that senior role sr can acquire all permissions assigned to itself together with all permissions
assigned to the junior role jr .

//Unrestricted Permission Inheritance Hierarchy
fact UPIHFact{
all sr, jr: Role, p: Permission, d: Time, 1l: Location, upih: UPIH,
rpa: RolePermissionAssignment, pra: PermRoleAcquire |
((sr->jr in upih.member) && (jr->p->d->1 in pra.member) &&
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(sr->p !in (rpa.member) .Location.Time)) =>
(sr->p->sr.RoleEnableDur->sr.RoleEnableLoc) in pra.member}

The separation of duty constraints are modeled as predicates. Consider the weak form of SSoD
User Role Assignment. This constraint says that a user « assigned to role r1 during time d and
location / cannot be assigned to its conflicting role »2 at the same time and location. The other
forms are modeled in a separate manner.

//Weak Form of SSoD-User Role Assignment

pred W_SSoD URA(u: User, disj rl, r2: Role,

ura: UserRoleAssignment.member, d: Time, 1: Location) {
((u->rl->d->1) in ura) => ((u->r2->d->1) not in ura)

}

UPIHO |
RHmember[RoleOJI RHmember{Role2]
l RHmember[Role2]
Rolel [
|($TestConflictl_1_y) ‘ — [
I
———— RoleAllocTime RoleAllocLoc
f RoleAllocTime
Location Time ’
($TestConflict1_1_1) (STestConflictl_1_d)
member{Role0,Time] member{Role2,Time] RoleAllocTime
RoleAllocLoc
member{Rolel.Time]
— Role2 i
BSTestConﬂictl_l_x)I
e S b A

UserRoleAssignment
|

Figure 2.1: Counterexample for assertion TestConflict

Once our access control model has been specified in Alloy, we need to verify whether any
conflicts occur between the features of the model. We rely on the capabilities of the Alloy analyzer
for this purpose. We create an assertion that specifies the properties we want to check. Once the
assertion has been created, we let Alloy analyzer validate the assertion by using check command.
If our assertion is wrong in the specified scope, Alloy analyzer will show the counterexample.
For instance, to check the interaction of the weak form of SSoD, User Role Assignment and the
Unrestricted Permission Inheritance Hierarchy, we make the assertion shown below. The assertion
does not hold as illustrated by the counterexample shown in Figure 2.1.
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// WSSoD_URA violation in the present of UPIH Hierarchy
check TestWSSoD_URA

assert TestConflict{

no u: User, disj x, y: Role, upih: UPIH,
d: Time, 1l: Location, ura: UserRoleAssignment |
({(x->y in * (upih.member)) &&
(u->x->d->1 in ura.member)) =>
W_SSoD URA[u, x, y, u->(x+y)->d->1, d, 1]

)

check TestConflict

The counterexample shows one possible scenario. In this case, it uses the following instances
to show the violation.

1. Role = {Role0,Rolel,Role2}
2. UPIHO = {Role0 — Rolel,Role2 — Role0,Role2 — Rolel}
3. Time =d, Location =1

4. UserRoleAssignment = {User — Role0) — Time — Location,User — Rolel — Time —
Location,User — Role2 — Time — Location}

Substituting x and y in W_SSoD_URA predicate with Role2 and Rolel respectively, we get the
violation.

Similar types of analysis reveals that the various forms of SSoD permission role inheritance
conflict with the different forms of permission inheritance hierarchy. Conflicts were also detected
with the various forms of SSoD user role assignment with different forms of permission inheritance
hierarchy. Further, the various forms of DSoD constraints conflict with the different forms of role
activation hierarchy. Another source of conflict occurs between role activation and permission
when the corresponding location constraints or the temporal constraints do not overlap.

2.3 Conclusion and Future Work

Traditional access control models do not take into account environmental factors before making
access decisions. Thus, these models are not quite suitable for pervasive computing applications.
Towards this end, we propose a spatio-temporal role based access control model. We identify the
entities and relations in traditional RBAC and investigate their relationships with location and time.
These relationships necessitate changes in the invariants and the operations of RBAC. The behavior
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of the new model is formalized using constraints. We investigate the relationships between the
different constraints and how they interact with each other.

There still remains some work to be done. We need to investigate how to store location and
temporal information in an optimal manner, so that they can be used by the access control en-
forcement module. Pervasive computing applications are typically represented as workflows. This
necessitates our developing a spatio-temporal access control model for workflows. Workflows have
additional control-flow and data-flow dependency constraints. It would be interesting to see how
these constraints are affected by the spatio-temporal authorization constraints.
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Chapter 3

Applying Spatio-Temporal Model to
Real-World Applications

The proposed spatio-temporal role-based access control is suitable for various types of application.
However, when such a model with numerous features is used for protecting a given application,
we must provide assurance that no access control breach occurs. We propose a methodology that
describes how we can get assurances that an application is indeed adequately protected. We use
a real-world application called the Dengue Decision Support (DDS) system to illustrate our ap-
proach. The DDS application is being developed by the Colorado State University in collaboration
with the government of Mexico to help state-level public health officials respond to local outbreaks
of dengue. Health officials are provided with mobile phones that run this application. They move
from location to location gathering statistics about mosquito population which is then uploaded to
a central system for further analysis.

In order to formally analyze the authorization policies for the application, it is important to
specify the application and its access control requirements in a formal specification language. We
chose the Unified Modeling Language (UML) [34] for several reasons. First, it is the de facto
modeling language used in the software industry. Second, it is easy to use and understand. Third,
it is used together with Object Constraint Language (OCL), which is based on first order predicate
logic; this makes specifications in UML amenable to analysis. We show how the existing access
control requirements for the DDS can be specified using UML and OCL.

Although formal analysis can be done on UML specifications that are augmented with OCL
constraints, there is not much tool support for automated analysis. Towards this end, we advocate
the use of Alloy [24] for doing automated analysis. We collaborated with researchers at University
of Birmingham, U.K., in the development of a tool called UML2Alloy [1, 2] that automatically
transforms UML class diagrams and OCL statements into Alloy models, which can then be verified
by the Alloy Analyzer. The analysis demonstrates how well the access control requirements protect
the application.
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The rest of the chapter is organized as follows. Section 3.1 provides a brief background on
how UML models can be transformed into Alloy specifications. Section 3.2 describes the Dengue
Decision Support System and its access control requirements. Section 3.3 illustrates the model
analysis process in the context of DDS. Section 3.4 concludes the chapter and enumerates future
research.

3.1 UML to Alloy Transformation

We propose an approach that will transform UML models with OCL constraints into an Alloy
specification. Alloy [22, 23, 24, 57] is a fully declarative first-order logic language designed for
modeling and analyzing complex systems. An Alloy model consists of a number of signature and
relation declarations. A signature specifies entities used to model the system, and relation decla-
rations specify the dependencies between such entities, allowing the designer to capture complex
structures. Alloy is supported by a fully automated constraint solver, called Alloy Analyzer , that
analyzes system properties by searching for model instances that violate assertions about them.
Alloy Analyzer translates the model into a Boolean expression, and analyzes it using embedded
SAT-solvers. The user specifies a scope to the tool, which is an integer number used to bound
the domain of model clements. Bounding enables the tool to create finite Boolean formulas for
evaluation by the SAT-solver. If Alloy Analyzer produces an instance that violates the assertion (a
counterexample), we can infer that the specified property is not satisfied.

There are clear similarities between Alloy and UML languages such as class diagrams and
OCL. From a semantic point of view both Alloy and UML can be interpreted by sets of tuples
[25, 44]. Alloy is based on first-order logic and is well suited for expressing constraints on object
oriented models. Similarly, OCL has extensive constructs for expressing constraints as first order
logic formulas. Considering such similarities, model transformation from UML class diagrams
and OCL to Alloy seems straightforward. However, UML and Alloy have fundamental differ-
ences, which are deeply rooted in their underlying design decisions. For example, Alloy makes
no distinction between sets, scalars and relations, while the UML makes a clear distinction be-
tween the three. Other examples include that UML supports a number of primitive types, whereas
Alloy only supports integers. UML also supports aggregation and composition, but there is no
counterpart in Alloy. All of this makes the transformation from UML to Alloy challenging.

Figure 3.1 depicts an outline of our approach. Using the Extended Backus-Naur Form (EBNF)
representation of the Alloy grammar [25], we first generate a Meta Object Facility (MOF) comphi-
ant [36] metamodel for Alloy. We then select a subset of the class diagrams [33] and OCL [37]
metamodels. To conduct the model transformation, a set of transformation rules has been defined.
The rules map elements of the metamodels of class diagram and OCL into the elements of the
metamodel of Alloy. The rules have been implemented into a prototype tool called UML2Alloy.
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Figure 3.1: Outline of the transformation method

If a UML class diagram, which conforms to the subset of UML we support, is provided as input to
UML2Alloy, it automatically generates an Alloy model. For lack of space, we do not show how
the EBNF representation of Alloy’s grammar is transformed into a MOF compliant metamodel but
refer the interested reader to [1]. In addition, the UML and OCL metamodels are not presented
here, but can be found in the respective specification documents [33, 37].

Table 3.1 presents a table which provides an informal mapping between the most important
elements of the UML and OCL metamodels and Alloy. More specifically a UML Class is translated
to an Alloy signature declaration (ExtendsSigDecl), which defines a Sigld with the same name. If
the class is not a specialization, the Alloy signature is not related to any SigRef. Otherwise, it may
be related to a SigRef, which references the signature it might extend.

A Property is translated to a declaration expression (declExp), which is used to define a field in
an Alloy model. An Operation is transformed to a Predicate and the Parameters of the operation
are transformed to declarations (Decl). An Enumeration [33] is transformed to a signature declara-
tion SigDecl, which declares an abstract signature. An EnumerationLiteral is transformed to a sub
signature. A more complete transformation rules from UML to Alloy and their implementation are
explained in our paper [1].

3.2 Dengue Decision Support System

We illustrate our approach using a real-world Dengue Decision Support (DDS) system. DDS helps
state-level public health officials respond to local outbreaks of dengue. Response consists of vec-
tor control and vector surveillance, namely, spraying (control) and investigating locations where
mosquitoes may be breeding and living (surveillance), and if the level of confirmed dengue cases
has increased above a prescribed threshold. Public health officials are organized in jurisdictions,
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| UML+OCL metamodel element | Alloy metamodel clement |
Class ExtendsSigDecl
Property DeclExp
Operation Predicate
Parameter Decl
Enumeration ExtendsSigDecl
EnumerationLiteral ExtendsSigDecl
Constraint Expression |

Table 3.1: Informal mapping between UML and Alloy metamodel elements

based on population, and multiple jurisdictions are included in a single state. When the threshold
is reached, officials at both levels respond. The jurisdiction officer activates vector control and
surveillance teams that are local to the jurisdiction, with instructions regarding the specific control
and surveillance protocols to follow and the locations where they are to be performed. The state
officer releases materials for control to the team, and the local team then performns the controls
and surveillance ordered. The jurisdiction and state vector control officials are often located in
different buildings, although the vector control team is co-located with the jurisdiction officer. All
control materials are located in warehouses elsewhere, and for coordination reasons are controlled
by the state officer. Information about specific cases of dengue is retained in what is called an epi-
demiological study. This data includes information about the patient, the location where the patient
lives (the premise), the case, and control and surveillance actions performed at the premise. The
patient and case data are considered private information, and are only available to epidemiologists
at the jurisdiction and state levels. The vector control team receives premise information along
with orders for control and surveillance. However, the team also needs to have names associated
with the premises in order to validate the location. The team therefore needs access to some of the
patient data for a fixed period of time, in order to perform control and surveillance duties. For lack
of space, we omit giving the full specification.

Security Policies

Entities

DDS system consists of the following roles: State Epidemiologist, Jurisdiction Epidemiologist,
Clinic Epidemiologist, Clinician, State Vector Control, Jurisdiction Vector Control, and Local Ju-
risdiction VC Team. Tasks user can perform are listed in Table 3.2. Each role can perform their
own set of tasks in the designated location and time summarized in Table 3.3.
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Role Hierarchy

Some roles in the DDS are related using unrestricted permission inheritance hierarchy. Using our
model, these relationships can be defined as follow: State Epi > Juris Epi, Clinic Epi > Clinician,

and State VC > Juris VC.

Separation of Duty

There are two separation of duty constraints in DDS system. Both are the strong spatial form of
static separation of duty. These permissions should not be assigned to the same user at the same
time at any location. Note however, unlike traditional separation of duty, these permissions can be

assigned to the same user at different times.

1. User should not have permission to change VC protocols at the same time as he has permis-

sion to change VC materials.

Task Task
1 | Read Premise 10 | Read VControl
2 | Change Premise 11 | Change VControl
3 | Read Case 12 | Read Work Record
4 | Change Case 13 | Change Work Record
5 | Read Patient 14 | Read VC Materials
6 | Change Patient 15 | Change VC Matenals
7 | Read Patient Names 16 | Signal VC Need for DV
8 | Read Schedule Work 17 | Signal VC Need for DHF
9 | Change Schedule Work
Table 3.2: DDS Tasks List
Role Tasks Location Constraint Time Constraint
State Epi 16 A-State Office a—Regular Hours
Junis Epi 1,3 B-Juris Office a—-Regular Hours
17 B—lJuris Office b—Any Time
Clinic Epi 17 C—Clinic b-Any Time
Clinician I, 2, 5 9,0 C—Clinic a—-Regular Hours
State VC 11,15 A-State Office a—Regular Hours
Junis VC 1,8,9,10,12, 14 | B-Juris Office a—Regular Hours
Local VC Team | 7 B-Juris  Office, E- | c—24 Hours Window
Emergency Location after signal to begin
work
1,9,13 B-Juris Office, D-Field a—Regular Hours
Table 3.3: DDS Role Constraints

2. User should not have permission to signal DV at the same time as signal DHF.
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These can be represented in STRBAC as follow: (11,15) € SSOD_PRA; and (16,17) € SSOD_PRA,.

3.3 Model Analysis

Security analysis begins with abstracting and transforming the security policies of DDS into a
UML class diagram and accompanying OCL statements. The class diagram depicts the entities
that take part in the model, and defines their attributes related in the access control operations,
such as the time and location attribute. OCL statements specify the invariants of the model such
as the tasks assigned to role and security constraints that all entities in the model must satisfy.
The next step involves using UML2Alloy to automatically transform the class diagram and OCL
statements into an Alloy model, which is subsequently analyzed using Alloy Analyzer.

3.3.1 Stage 1: Model Abstraction

We first simplify the original model by removing non-essential elements so that the translation to
Alloy produces a model that only contains items necessary to reason about its security properties.
For example, we remove the attributes which are not related with the security such as, gender,
birthdate, ssid from the Person entity since these attributes are not related with the access control
model. The resulting UML class diagram is shown in Figure 3.2.

The permission to role assignments are expressed as OCL constraints. The following OCL
statements depict the constraints for the permission to role assignment for Juris Epi role.

context JurisEpi

inv jurisEpiCon : (self.tasks = (Task :: ONE ->
including (Task :: THREE)) and

self.location = Location :: B and

self.timeCon = Time :: a) or

(self.tasks = (Task :: SEVENTEEN -> including
(Task :: SEVENTEEN)) and

self.location = Location :: B and

self.timeCon = Time :: b )

The effect of permission inheritance hierarchy and separation of duty can also be expressed in
OCL. We omit those details here but refer the interested reader to our paper [53].

3.3.2 Stage 2: Model Transformation

The UML2ALlloy tool is used to create an Alloy model from the class diagram and associated OCL
specification. When we apply UML2Alloy to the UML class diagram and its OCL specification,
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Figure 3.2: UML model for DDS’s access control policies

the class diagram will be transformed to the following signatures in Alloy corresponding to each

class shown in Figure 3.2.

abstract sig Role(
location:one Location,
timeCon:one Time,
tasks:some Task,

uses:set Person}

one sig StateEpi extends Role{}

one sig JurisEpi extends Role{}

some sig Person{roles:some Role}

abstract sig Location{}

one sig A extends Location{}

one sig B extends Location{}
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sig Time{}

sig a in Time{}
sig b in Time{}
sig ¢ in Time{}

abstract sig Task{}
one sig ONE extends Task({}
one sig TWO extends Task({)

one sig SEVENTEEN extends Task{}

The OCL constraint for the permission role assignment will be transformed to fact and predi-
cate in Alloy. For example, the OCL constraint for the permission role assignment of the Juris Epi
role will be transformed to the following Alloy code.

fact JurisEpi_jurisEpiCon_fact {
all self: JurisEpi | JurisEpi_jurisEpiCon[self]}

pred JurisEpi_jurisEpiCon([self: JurisEpi] {
((self.tasks = ONE+THREE) && (self.location = B) &&
(self.timeCon = a)) || ((self.tasks = SEVENTEEN) &&
(self.location = B) && (self.timeCon in Time))}

The effect of role hierarchy represented in the OCL constraint will also be transformed to
fact and predicate jn Alloy. The OCL constraint for the separation of duty constraint will be
transformed to predicate in Alloy. Our paper [53] lists all the detailed specifications.

3.3.3 Stage 3: Model Analysis

Alloy assertions must be formulated prior to analysis by Alloy Analyzer. Assertions are statements
that capture properties we wish to verify. Alloy Analyzer automatically checks such assertions and,
if they fail, produces a counterexample. We have checked several assertions regarding the security
properties of the example system. For example, it is crucial to ensure that no user can change VC
protocols (task 11) at the same time as he has permission to change VC materials (task 15). To
verify this, we create the following assertion:

assert NoConflictPermsSTVCAssigned(
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all r: Person.roles, d: Time, 1: Location|
((ELEVEN in r.tasks) && (d in r.timeCon) &&
(1 in r.location)) =>

((FIFTEEN !in r.tasks) && (d in r.timeCon) &&
(1 in r.location)) }

The assertion produced no counterexample, meaning that it is valid for the given scope, which
in this case was 8. We also checked whether the SoD for role permission assignment is maintained.

assert NoConflictPermsSTVC(

all r: StatevC, d: Time, 1: Location|
((ELEVEN in r.tasks) && (d in r.timeCon) &&
(1 in r.locaticn)) =>

({FIFTEEN !in r.tasks) && (d in r.timeCon) &&
{1 in r.location))}

We chose a value of 8 for the scope of this analysis as well. However, this time the analyzer
produced counterexample, which means these conflict permissions can be assigned to the same
role. The counterexample is shown in Figure 3.3.
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Figure 3.3: Counterexample for assertion NoConflictPermsSTVC
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3.4 Conclusion and Future Work

Our spatio-temporal access control model is well suited for securing real-world pervasive comput-
ing applications. However, due to the complexity of the application and the access control model,
we need assurance that the application is indeed adequately protected. We use UML together
with OCL for specifying the application and its access control requirements. Since UML does not
have much automated tool support, we convert the UML model into Alloy and verify the resulting
model automatically. In this chapter, we showed how the specification and verification of a typical
application security policies can be effected in our framework.

The applicability of SAT-solvers (such as the one in Alloy) for the purpose of analysis is limited
by the size of the model that can be verified. Consequently, we are investigating how to further
abstract the model resulting in the construction of smaller SAT formulae that can be efficiently
verified. This, together with new research for improving SAT-solver technology, will alleviate the
limitation mentioned above.
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Chapter 4

Graph-Theoretic Representation of
Spatio-Temporal Model

In the previous chapters, we outlined the new spatio-temporal role-based access control model
that we have developed as part of this project. The model is specified in terms of constraints that
support the various features of the model. It is important that the model be properly analyzed which
is a non-trivial problem. In this chapter, we refine our original spatio-temporal role-based access
control model into three simpler models so that their semantics can be expressed expressed in terms
of graph theory. The use of graph-theory offers several advantages. It allows one to visualize the
relationships and interactions among the different components of the model. Using the directed
graph representation, the interaction and relationship between components in the model becomes
more clear and expressive. It also allows one to readily detect the presence of inconsistencies using
graph theoretic algorithms. These simple spatio-temporal access control models are more easily
used in real world applications.

The simpler models also serve an important purpose. Pervasive computing applications, in
general, are dynamic in nature. This means that while an application is executing, the entities
requiring access or the resources needing protection may change. In the face of such dynamism, it
is essential to ensure that access control breaches do not occur. Since the required analysis to verify
the satisfaction of security properties must also be done in real-time, it is important to minimize
the verification time. The graph-theoretic approach allows techniques for incremental analysis with
good time complexity results. For example, to detect SoD violations in a dynamic graph, we need
to find whether the nodes connected by SoD constraints have a common predecessor. Applying
a naive algorithm based on Depth First Search, requires O(KE) time for each change applied to
the graph, where £ is the number of SoD constraints and £ is the number of edges. We have been
able to improve upon this result significantly by proposing a new common predecessor detecting
algorithm in a dynamic graph.

The rest of the chapter is organized as follows. Section 4.1 presents our spatio-temporal role-

37




based access control model using graph theoretic notations. Section 4.2 focuses on the dynamic
aspects of the model and how we can ensure absence of access control breaches in the face of such
changes. Section 4.3 1llustrates our ideas by using an example application. Section 4.4 concludes
the chapter.

4.1 STARBACD: The Refined Spatio-Temporal Model

We begin by giving a graph-theoretic formulation for our spatio-temporal role-based access control
model that supports role hierarchy. The set of vertices V' = U URU PU O correspond to the RBAC
entities: Users (U), Roles (R), Permissions (P), and Objects (O). Our model assumes the existence
of the following relationships of RBAC that constitute the set of edges £ = U4UPAUPOURH,U
RH, where

User-Role Assignment (U4) =U x R

Permission-Role Assignment (PA) =R x P

Permission-Object Assignment (PO) =P x O

Role Hierarchy (RH) = R x R x {a,u}, which can be categorized to:

— the activation hierarchy (RH,) = {(r,”’) : (r,,a) € RH}, and
— the permission usage hierarchy (RH,) = {(r,”’) : (r,r',u) € RH}

We define the notion of activation path, usage path and access path in a manner inspired by
Chen and Crampton [8]. An activation path (or act-path) between v; and v, is defined to be a
sequence of vertices vy,...,v, such that (v;,v;) € U4 and (v;-1,v;) ERH, fori=3,...,n. A
usage path (or u-path) between v and v, is defined to be a sequence of vertices vy, ..., v, such that
(vi,vis1) ERHy fori=1,...,n—2, and (v,—1,v,) € PA. An access path (or acs-path) between v,
and v, is defined to be a sequence of vertices v,..., vy, such that (v;,v;) is an act-path, (v;,v,—1)
is an u-path, and (v,_1,v,) € PO.

We assume the existence of a spatio-temporal domain ©. We develop three refined models,
namely, the standard model (STARBACD™), the strong model (STARBACD™), and the weak
model (STARBACD ™). The models differ with respect to the spatio-temporal constraints that
must be satisfied by the entities for the authorization to be successful. The strong model imposes
the most number of constraints and is suitable for military applications. The weak model imposes
the least number of constraints. It is intended primarily for emergency situations where we need
to make rapid decisions yet ensuring that mimimum security requirements are not violated. The
details of all three models appear in our paper [54]. We present the highlights of the strong model
only in this chapter. )

The strong model is used when the individual entities (users, roles, permissions, objects) and
the different relationships must satisfy the spatio-temporal constraints. Each entity is associated
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with spatio-temporal points that indicate where the entity can be activated. For example, the spatio-
temporal points associated with a role specify when and where the role can be activated. Similarly,
the spatio-temporal points associated with a relation indicate when the relationship can be acti-
vated. To illustrate, consider the relation (r,p) € PA. In this case, we not only have to take into
account the spatio-temporal points at which the role » can be activated in a session and the points
at which the permission p can be invoked, but also we must consider the spatio-temporal points
when r can invoke p.

The spatio-temporal constraints in the strong STARBACD model (or STARBACD™) are de-
scribed using two functions A and u which are defined below. A : ¥V — 22 Forve V,A(v) C D
denotes the set of points in space-time at which v can be invoked.

e if u € U, then A(«) denotes the set of points in space-time at which # may create a session;

e if r € R, then A(r) denotes the set of points in space-time at which » may be activated in a
session;

e if p € P, then A(p) denotes the set of points in space-time at which p may be granted;

e if 0 € O, then A(0) denotes the set of points in space-time at which o may be accessible.

u:E — 2%, For e = (v,V) € E, u(v,v') denotes the set of points in space-time at which the
association between v and V' is enabled.

o if (u,r) € UA, then p(u,r) denotes the set of points in space-time at which u is assigned to r;

o if (¥/,r) € RH,, then u(+,r) denotes the set of points in space-time at which 7/ is senior to r
in the activation hierarchy;

e if (Y,r) € RH,, then u(r,r) denotes the set of points in space-time at which »’ is senior to r
in the permission usage hierarchy;

e if (r,p) € PA, then u(r, p) denotes the set of points in space-time at which p is assigned to r.

e if (p,0) € PO, then y(p, o) denotes the set of points in space-time at which o is assigned to

p-

Given a path vy,...,v, in the labeled graph G = (V,E,A, u), where ¥ = UURUPU O and
E = UAUPAUPOURH, URH, , we write ji(vy, ..., v,) = ji(v1,va) C D to denote (=)' p(vi,vis1).
The semantics imply that an edge can only be enabled if both endpoints are enabled. Hence,
i(v1,vy) is the set of points at which every vertex and every edge in the path is enabled.

Authorization in STARBACD': e auser v e U may activate role v/ € R at point d € © if and
only if there exists an act-path v =v),v2,...,v, =V and d € j(v,V);
e arole v € R is authorized for permission V' € P at point d € D if and only if there exists
an u-path v=v,v3,...,v, =V and d € ji(v,V/);
e auser v € U is authorized for permission v/ € P with respect to object v/ € O at point
d € D if and only if there exists an acs-path v=vy,v2,..., V..., Vue) =V, v, = V' such
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that v; € R for some i, vy,...,v; is an act-path, v;,..., v, is an u-path, (v,_,v,) € PO
and d € ju(v,V");

Our model also supports separation of duty (SoD) constraints. SoD prevents the occurrence of
fraud arising out of conflicts of interests in organizations [46]. Separation of Duty (SoD) comes in
two varieties. First one ensures that no user can be assigned to two conflicting roles. Second one
guarantees that no role can be assigned two conflicting permissions. We denote these two types of
SoD by using SDR and SD” edges, respectively. Since SoD is a symmetric relationship, the SD?
and SD” edges are bi-directional.

The strong model supporting SoD constraints is defined over the labeled graph G = (V,E, A, u),
where E = UAUPAUPOURH,URH,USDRUSD and ¥V = UURUPUO. The strong model
allows specification of weaker forms of SoD constraints than those supported by the traditional
RBAC. Specifically, it allows one to specify the spatio-temporal points at which the SoD con-
straints are valid.

SoD Constraints for STARBACD*
User-Role Assignment: if (7,7) € SD® then there are no two edges (,r) and (u,7'), correspond-
ing to some user u, where p(u,r) N u(u,”)Nu(r,Y) #0
Permission-Role Assignment: if (p, p’) € SD then there are no two u-paths r = vy, v5,...,v, =
pandr =, h, .., v = ol where J1,ve) %, v,) N (p, ) #0

Pervasive computing applications require that our model support delegation. This is because
many situations require the temporary transfer or granting of access rights belonging to a user/role
to another user/role in order to accomplish a given task. For example, a doctor may delegate some
of his privilege to the nurse while he is temporarily unavailable. The entity that transfers or grants
its privileges temporarily to another entity is referred to as the delegator and the entity who receives
the privilege is known as the delegatece. The delegator (delegatee) can be either an user or a role.
Thus, we may have four types of delegations: wuser to user (U2U), user to role (U2R), role to role
(R2R), and role to user (R2U). When a user is the delegator, he can delegate a subset of permissions
that he possesses by virtue of being assigned to different roles. When a role is the delegator, he can
delegate either a set of permissions or he can delegate the entire role. We can therefore classify
delegation on the basis of role delegation or permission delegation. In the graphical representation
of STARBACD, we define a function v : (UUR) x (RUP) — (UUR) that maps the delegation to
the delegator. The user to user role delegation is formalized as follows: (Delegatef ;) = U x R,
v(u,”) = ' denotes the delegator who is a user authorized for role . The other types of delegation
can be formalized similarly.

Delegation in the Strong Model STARBACD™

The strong model supporting delegation is defined over the labeled graph G = (V,E A, u),

where £ = UAU PAUPOURH,URH,UDG and DG is the set of all delegation edges and V =
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UURUPUO. We specify a sample delegation constraint as follows: If (u,”') € Delegatef;,,; and
v(u,”’) = u/, then there exists an act-path &' = vy, va,...,v,; = r’ such that ji(vy,v,) N u(u,r’) #0
This says that when a user «/ delegates role »/ to user u, then the delegation is possible only if the
spatio-temporal points for activating user #’’s role # overlap with those in which the delegation is
valid. For lack of space, we do not discuss all the other forms of delegation constraints, but refer
the reader to our paper [54].

4.2 Dynamic Model

Pervasive computing applications are dynamic in nature-the accessing entities may change, re-
sources requiring protection may be created or modified, and an entity’s access to resources may
change during the course of the application. Such changes may result in unreachable or isolated
entities (such as, a normally authorized user being denied access because the user-role-permission
assignment has been removed), or the violation of separation of duty constraints. We need to
analyze the model to detect such problems. The following changes are possible in our model.

1. Entity and Relationship Removal The following entities can be removed: user, role, per-
mission, or object. Note that, this removal must be accompanied by deleting the relationships
associated with these entities.

2. Relationship Removal The following relationships can be removed: User-Role Assignment,
Permission Usage Hierarchy, Role Activation Hierarchy, Role-Permission Assignment, or
Permission-Object Assignment. This type of change can also cause an entity to become
isolated.

3. Relationship Creation A new relationship can be created between existing entities. The
relationship may be User-Role Assignment, Permission Usage Hierarchy, Role Activation
Hierarchy, Role-Permission Assignment, Permission-Object Assignment, SoD, or Delega-
tion. Creation of a new relationship may result in separation of duty violation.

4. Entity and Relationship Creation A new entity together with its corresponding new rela-
tionship can be created. The entity may be user, role, permission, or object. The relationship
may be User-Role Assignment, Permission Usage Hierarchy, Role Activation Hierarchy,
Role-Permission Assignment, Permission-Object Assignment, SoD, or Delegation depend-
ing on the type of entity being created. This type of change can cause the SoD constraints
violation.

5. Updating Spatio-Temporal Constraints The spatio-temporal constraints assigned to enti-
ties or relations can be changed. The entity may be user, role, permission, or object. The
relationship may be User-Role Assignment, Permission Usage Hierarchy, Role Activation
Hierarchy, Role-Permission Assignment, Permission-Object Assignment, SoD, or Delega-
tion. This type of change can cause either the infeasible path violation or SoD constraints
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violation.

4.2.1 Algorithm for Detecting Isolated Entities

Preliminaries

We define an isolated entity as one which is unreachable and therefore cannot be used. The isolated
entity can be determined by considering the in-degree and out-degree of each vertex. The in-degree
and out-degree of the vertex defined with respect to STARBACD™ model are given below.

In-degree In the labeled graph G = (V,E, A, u), where V = UURUPUQ and E = UAUPAUPOU
RH,URH,, in-degree of a vertex v is the cardinality of the set {(v/,v)|((V/,v) € E)A(A(V)N
AW)Nu(Y,v) #0)}

Out-degree In the labeled graph G = (V,E, A, u), where ¥V = UURUPUO and E = UAUPAU
POURH, U RH,, out-degree of a vertex v is the cardinality of the set {(v,)|((v,V/) € E) A
(M) AL N, V) # 0)}

Note that, we do not consider the separation of duty or the delegation edges since the modifications

to these edges do not change the isolated entities.

The Detection Algorithm

The different types of isolated entities are detected as follows:

User Forv e U, v is the isolated entity iff out-degree(v) = 0
Role and Permission Forve RUP, vis the isolated entity iff (in-degree(v) = 0) V (out-degree(v) =
0)

Object For v € O, v is the isolated entity iff in-degree(v) =0

To get the in-degree and out-degree, we have to count the number of edges connected to each
vertex. This can be done in O(VE) time. However, we can improve this by recording the in-degree
and out-degree of each vertex. Each time the vertex or the edge is added to or removed from the
graph, we update the in-degree and out-degree of the related vertices. Since we do not allow the
existence of multiple edges between each pair of vertices, this update process can be done in O(V').
After we have such values recorded for every vertex, the detection can be done in O(V).

4.2.2 Algorithm for Detecting Infeasible Paths
Preliminaries

In STARBACD model, a user u is authorized for permission p through role r with respect to object
o iff there exists a valid acs-parh which contains u, r, p, and 0. We define an infeasible path as an

invalid acs-path i.e. an acs-path which cannot grant the authorization of any permission to user.
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The Detection Algorithm

To detect the infeasible path, we assume that we store all source vertices in a list. Each member
in the list maintain its own depth-first search (DFS) tree. To generate these trees, we perform DFS
from each source. While performing the DFS, we check if there is any spatio-temporal conflicts
between the nodes or edges. If there is any conflict, then there exists an infeasible path. This
step could be done in O(VE). After the process we will have set of the initial DFS trees which
consists of feasible paths. Next for each update operation of the graph, we ensure that the following
conditions are satisfied:

e Only user vertices can be the root of each subtree.
e Only object vertices can be the leaf node of each subtree.

For each update operation of the graph, we proceed as discussed here. If any new entity v and its
corresponding relationship have been added to the initial graph, we consider the following:

e If vis a new source, we perform DFS from v to create all of its acs-paths. While perform-
ing the DFS, we check whether the spatio-temporal constraints between the source and its
successors are satisfied. If so, we add v to the source list and maintain its pointers to its
immediate successors. If not, then this v will create an infeasible path. This step can be done
in O(E) time.

¢ If vis a new intermediate vertex, we perform DFS from each source. While performing the
DFS, we check whether all spatio-temporal constraints are satisfied. If so, we create pointer
from v’s immediate predecessors to v, and from v to its immediate successors. If not, then
this v will create an infeasible path. This step can be done in O(VE) time.

e If v is a new sink, we perform reverse DFS from v. While performing the reverse DFS, we
check whether the spatio-temporal constraints between v and its predecessors are satisfied.
If so, we create pointer from its immediate predecessors to v. If not, then this v will create
an infeasible path. This step can be done in O(E) time.

If any existing spatio-temporal constraint has been updated in the initial graph, we consider the
following:

o If the update is done on A(v), where v is a source, we perform DFS from v to each of its acs-
path. While performing the DFS, we check whether the spatio-temporal constraints between
the source and its successors are satisfied. If so, we update A(v) to the new one. If not, then
this update will create an infeasible path.This step can be done in O(E) time.

o If the update is done on u(v,V), where v is a source, we perform DFS from v to each of
its acs — path which contains V. While performing the DFS, we check whether the spatio-
temporal constraints between the source and its successors are satisfied. If so, we update
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u#(v,V) to the new one. If not, then this update will create an infeasible path.This step can be
done in O(E) time.

o If the update is done on A(v) or u(v,V'), where v is an intermediate vertex, we perform
DFS from each source. While performing the DFS, we check whether all spatio-temporal
constraints are satisfied. If so, we update A(v) or g(v,V/) to the new one. If not, then this
update will create an infeasible path. This step can be done in O(VE) time.

o If the update is done on A(v), where v is a sink, we perform reverse DFS from v. While
performing the reverse DFS, we check whether the spatio-temporal constraints between v
and its predecessors are satisfied. If so, we update A(v) to the new one. If not, then this v
will create an infeasible path. This step can be done in O(E) time.

e Ifthe update is done on u(v,V'), where v/ is a sink, we perform DFS from v to each of its acs-
path which contains v. While performing the DFS, we check whether the spatio-temporal
constraints between the source and its successors are satisfied. If so, we update u(v,V/) to
the new one. If not, then this update will create an infeasible path. This step can be done in
O(E) time.

4.2.3 Algorithm for Detecting SoD Violations

Preliminaries

In STARBACD model, SoD can be violated in one of two ways. First, if (r;,7;) € SDR, and there
exists acs-paths from u) to r; and u; to 5. Or, if (p1,p2) € SDP, and there exists u-paths from r
to p) and r; to p;.

The Detection Algorithm

Consider the dynamic case where edges can be added and deleted from the graph. The naive
algorithm can be done by performing the reverse DFS on each (v,v/) € SDRUSD” of the modified
graph to find the common predecessor. This could be done in O(k|E|) time. We can apply the
same algorithm for the case where the spatio-temporal constraint is updated in the graph too.

Our algorithm which will be proposed next is a special case of the algorithm to find the com-
mon predecessors in a Directed Acyclic Graph (DAG). In our algorithm, each entity except a user
will maintain a list of users authorized for it by performing the DFS from each user. Only users
satisfying the spatio-temporal constraints will be added to the list. To determine whether the SoD
(v,v/) € SDP USDR is violated, we compare whether u € U is in the authorized users list of both v
and v, and AMu) N u(v,V/) # 0. If this evaluates to true, then there exists an SoD violation. Since
the size of each list cannot exceed the number of user vertices, the evaluation time is O(|U|). Let
k be number of SoD edges. The detection time for the static case where no adding or removing
of edges is allowed, is equal to O(k|U|). To label all vertices it takes O(|E||U|) time, and yields
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the total running time in the static graph equal to O((k+ |E|)|U|). However, in the case where all
edge modifications are of same type, i.e., only either adding edges or deleting edges are allowed,
we can improve the running time by applying the following algorithm:

e When only adding edges is allowed, each time a new edge is added, we update only the
label list of vertices belonging to the graph portion that have not been reached before by
using the Incremental-DFS described in our paper [54]. All updates take O(|E||U|) time,
and detecting whether the SoD is violated take O(|U|) per SoD edge. This yields the total
processing time equal to O((k+ |E|)|U}).

e When only removing edges is allowed, we update only the label list of vertices that becomes
unreachable by some user u after the edge removal. Using our proposed algorithm [54], the
removal of an edge takes O(|E|log|V'|) time for relabeling for each user vertex, and detecting
whether the SoD is violated take O(|U|) per SoD edge. This yields the total processing time
equal to O((k + |E|log|V|)|U}).

For the detail on graph specification updating algorithm and proof of correctness, we refer to our
paper [54].

4.3 Military Example

We describe a military application where the STARBACD™ can be applied. Let us assume that
in the battlefield, each troop consists of military staff with the following responsibilities: The
Intelligent Officer is responsible for the process of acquiring enemy information, interpreting it
and then sending it to the Soldier in his troop. The Clinical Officer is in charge of monitoring the
health information of his troop, evaluating the information to check whether the trooper’s life is in
danger, and sending the SOS signal to the commander to get the proper help. The list of entities
and the spatio-temporal relationships are shown in Tables 4.1 and 4.2 respectively.

The graph-theoretic representation is shown in Figure 4.1(a). We will only describe parts of
this configuration. User 4lex (u)) can create session at any time and at any place as per Row 1
of Table 4.1. He is assigned the role of Intelligence Officer (ry) which can be activated at any
place at any time. During this time and at this location, he has permission (p;) to access the
Surveillance Sensor Information (01). Since Intelligence Officer is senior to Soldier role in the
permission usage hierarchy, he can also get the permission to maneuver the Tank. However, this
permission is allowed only when the hierarchy is enabled on the battlefield. During the war, Alex
gets injured and cannot pursue his mission. So, his role must be delegated to Charlie until he fully
recovers. This new graphical representation is shown in Figure 4.1(b) where the delegation edge
1s represented by the dashed arrow. However, this delegation should not be allowed because our
algorithm detects a violation of separation of duty constraint in the presence of this delegation.
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NAME | DESCRIPTION SPATIO-TEMPORAL DOMAIN (A)

uj Alex Universe,Always

u Ben Universe,Always

u3 Charlie Universe,Always

r Intelligence Officer [Universe, Always]

r Soldier [Field, Always]

r3 Clinical Officer [Universe, Always]

D1 Access Surveillance Sensor [Universe, Always)

P2 Maneuver the Vehicle [Field, Always]

3 Access Vital Sensor [Universe, Always]

0] Surveillance Sensor Information | [Universe, Always)

02 Tank [Field, Always]

03 Health Information [Universe, Always]
Table 4.1: STARBACD entities for the military example

NAME | DESCRIPTION SPATIO-TEMPORAL DOMAIN (u)

(u1,r1) | User-Role Assignment [Universe, Always)

(u2,r2) | User-Role Assignment [Field, Always]

(u3,r3) | User-Role Assignment [Universe, Always]

(r1,r2) | Permission Usage Hierarchy [Field, Always]

(r1,p1) | Permission-Role Assignment | [Universe, Always]

(r2,p2) | Permission-Role Assignment | [Field, Always]

(r3,p3) | Permission-Role Assignment | [Universe, Always]

(p2,p3) | Separation of Duties [Universe, Always)

(p3,p2) | Separation of Duties [Universe, Always)

(p1,01) | Permission-Object Assignment | [Universe, Always]

(p2,02) | Permission-Object Assignment | [Field, Always]

(p3,03) | Permission-Object Assignment | [Universe, Always]

Table 4.2: STARBACD relationships and constraints for the military example

4.4 Conclusion and Future Work

We present a graph-theoretic representation of our spatio-temporal role-based access control model
that allows one to visualize and reason about spatio-temporal access control. The dynamism in-
herent in pervasive computing applications may cause the access control configuration to change
while the application is executing. Towards this end, we show how to perform incremental analy-
sis to give assurance that security breaches do not occur as a result of changing the access control
configuration. Our analysis makes clever use of data structures and achieves good time complexity
results.

Pervasive computing applications will typically be modeled as workflows. In future, we plan to
extend our graph-theoretic formalism to represent the access control configuration of workflows.
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(a) Configuration before delegation (b) Configuration after delegation

Figure 4.1: Access control configurations for the military example

We also plan to investigate the interaction of workflow and authorization constraints where the
access control model is updated during workflow execution.

47




Chapter 5

A Trust Model for Pervasive Computing
Applications

Traditional security policies and mechanisms assume a binary notion of trust — either an entity
1s trusted completely or not at all. However, such a simplistic notion of trust is not suitable for
pervasive computing applications where there are interactions among different entities, not all of
which are equally trustworthy. The reason is that these binary models of trust fail to correctly
assess trust levels of groups in which some of the entities are trusted while others are not. The
nature of interactions, often times, depends on the trust relationships between the entities. Thus,
it is important to formalize and capture the trust relationships which will allow us to compare
them and compose them to make decisions. Moreover, since pervasive computing applications are
dynamic and involves interacting with unknown entities, the trust model should be able to represent
and argue about uncertainty. The trust model should also be interoperable as pervasive computing
applications often span multiple organizations.

In this chapter, we present the highlights of a new trust model that we propose for pervasive
computing applications. We begin by defining trust as a relationship between a truster and a trustee
with respect to a given context. We identify the factors on which trust depends and show how to
assess these factors and compute the value of trust relationship. Subsequently, we formalize the
notion of context that allows us to compare trustworthiness across different domains and also
enables one to extrapolate trust in the absence of information in a given context.

The rest of the chapter is organized as follows. Section 5.1 presents an overview of our trust
model. Section 5.2 formalizes the relationship among different contexts which is needed to make
the trust model interoperable and to reason about trust in the absence of information in a given
context. Section 5.3 concludes the chapter with some references to future work.
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5.1 Overview of Trust Model

Trust is a relationship between two entities, a truster A and a trustee B, with respect to some context
¢. The trust relationship between a truster and a trustee is never absolute. A truster trusts a trustee
with respect to specific capabilities, such as providing a service or keeping a secret. This represents
our notion of trust context.

We start by representing the trust relationship (4 —~ B), as a 3 x 3 matrix. The rows of the
matrix correspond to the three parameters, namely, experience, knowledge, and recommendation,
on which trust depends. (The formal definitions of these parameters and methods for evaluating
them are given later.) We use Josang’s opinion model[26] to represent each of these parameters.
Each parameter is a (b,d,u) triple, where b means belicf, d specifies disbelief, and u signifies
uncertainty about the parameter to evaluate the trust. These three terms constitute the columns of
the trust matrix.

The three parameters may not have equal importance for evaluating trust. The trust policy vec-
tor specifies the normalization factor that gives the relative weight of each parameter. Applying the
normalization factor to the trust relationship gives a normalized trust relationship. The normalized
trust relationship between truster 4 and trustee B pertaining to context ¢ at time ¢ is formally de-
noted as (4 — B)N. It specifies A’s normalized trust on B at a given time ¢ for a particular context
c. This normalized trust is represented as a single triple (,JJ%, AEI;, A{zf,).

Trust is evaluated on the basis of three factors, namely, experience, knowledge, and recommen-
dations. In the following subsections, we briefly describe how each of these factors are computed.

5.1.1 Evaluating Experience

Definition 1 The experience of a truster about a trustee is defined as the measure of the cumulative
effect of a number of events that were encountered by the truster with respect to the trustee in a
particular context and over a specified period of time.

We model experience in terms of the number of events encountered by a truster, 4, regarding a
trustee, B in the context ¢ within a specified period of time [#9,,]. We assume that 4 has a record of
the events since time #. An event can be positive or negative or neutral. Positive events contribute
towards increasing the belief component of experience. Negative events increase the disbelief
component of experience. Neutral events increase both belief and disbelief components equally.
No experience contributes towards the uncertainty component of experience. In the following, we
describe how to calculate the experience that a truster 4 has about trustee B with respect to context
c. This is formally denoted as 4E§ = (bg, dg, ug) where bg, dg, ug represent belief, disbelief and
uncertainty components respectively with respect to the experience that A has towards B.

We use the temporal notation [1;,#;] for describing a time interval where 1; < ¢;. The time
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interval [1;,2;] describes the set of consecutive time instances where #; is the first instance and ¢;
is the last one. We denote the time period of interest as [f,t,]. This is divided into a set of n
sub-intervals [tg, ], [t;,%2], .. ., [ta—1,2s]. The intervals overlap at the boundary points only. That is,
Vi, j,k,1 €N, where i, j, k, I are all distinet, [1;,2;] N [tx, 1] = 0. Also, Vi, j,k € N, where i, j, k are
all distinct, [t;,¢;] N [t;,5] = {¢;}. That is, all instances, except 7o and #,, that occur at the boundary
of an interval is a part of two intervals. We refer to the interval [f;_;,#] as the &% interval where
0<k<n-1.

We assume that events occur at time instances. The function ET, referred to as the event-
occurrence-time function, returns the time instance #; at which a given event ¢; occurred. Formally,
ET(ex) =t;. Moreover, if ET(e;) =t; and t; € [t;,4] and j # i A j # k, then e is said to occur in
the interval [;,#]. For two consecutive intervals [t;,;] and [t;,%] if ET (e;) = t; then we assume e;
occurs in the interval [1;,¢;].

Let the experience acquired at interval i, 1 < i < n— 1, be represented as (b;,d;,u;) where b;,
d;, u; denotes belief, disbelief, and uncertainty respectively. When no event occurs during some
particular time interval i, this corresponds to the fact that #; = 1 and b; = d; = 0. The next case is
when events occur at the interval i. Let P; denote the set of all positive events, Q; denote the set
of all negative events, and N; denote the set of all neutral events that occur in the interval i. Each
positive event increases b;, each negative event increases 4, and each neutral event increase both b;

“N
and d;. The values for b;, d; and u; are computed as follows. b; = ]Flﬁ_Qﬁl_{TN_’ &= W%&EIW and
= 0. The intuition is that each positive event contributes to the belief componcm by W

Slrrularly, each negative event contributes to the disbelief component by m Each neutral
event contributes equally to both belief and disbelief component by % Moreover, since
events have occurred in the interval, the uncertainty component is 0.

Note that, in real world, events occurring in the distant past has less effect than those that have
recently occurred. More importance must be given to recent events than past ones. To accommo-
date this in our model, we assign a non-negative weight w; to the #* interval such that w; > wj
whenever j < i, i,j € N. We use the formula w; = é Vi=1,2,...,n where S = "—‘%‘l to evaluate
weights of the intervals, satisfying the above condition.

The experience of 4 about B in context c is expressed as, 4£5 = (bg, dg, ug). The values of

bg, dg, and ug are given by bg = ¥\ w;x b, dg = X, wixd;, and ug = ¥, w; * u; respectively.

5.1.2 Evaluating Knowledge

Definition 2 The knowledge of the truster regarding a trustee for a particular context is defined as
a measure of the condition of awareness of the truster through acquaintance with, familiarity of or
understanding of a science, art or technique.

The knowledge factor is made up of two parts: direct knowledge and indirect knowledge.
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Direct knowledge can be formally assessed or evaluated. Indirect knowledge is more subjec-
tive. Direct knowledge can be evaluated through credentials and certificates. Indirect knowl-
edge can be obtained by reputation. Direct knowledge and indirect knowledge are associated
with triples Kp = (bp, dp, up) and K; = (b;, d;, u;) respectively. Each piece of direct (in-
direct) knowledge is categorized into positive, negative, or neutral. The elements of the triple
(bp, dp, up) can be computed as follows. by = Zositive diﬁ;’k:ﬁ;gg:f‘;ﬁ‘;g Elfjg;;mw'cdgdz.
dp = facgtive d'zf;k::xg“:fzgg&“f:é\g‘lr:‘féch‘°“"°dgd2. If there is any direct knowledge up = 0, other-
wise up = 1. Similar formulas can be written for indirect knowledge.

The weight that a truster assigns to each of these knowledge types depends on the problem
context. The truster assigns the relative weights wp, w; for these two types of knowledge, where
wp,w; € [0, 1] and wp +wy = 1. The weights are determined by the underlying policy. Truster 4’s
knowledge about trustee B in the context ¢ is computed as

4Kz = wpxKp+wrxK;

wp X (bD’dD’uD)"*'WI X (bladlaul)

= (bk, dk, uk)

where bx = wp x bp +wy X by, dx = wp X dp+wy X dj, ux = wp Xup +wy X uj.

5.1.3 Evaluating Recommendation

Definition 3 A recommendation about a trustee is defined as a measure of the subjective or objec-
tive judgment of a recommender about the trustee to the truster.

The truster 4 may obtain a recommendation from multiple recommenders regarding trustee B
in the context c. The goal is to generate a triple (b,d,u) from each recommender and use these to
get (br,dgr,ug) which represents the recommendation that 4 has received about B with respect to
context ¢. First, we give the details about how the triple is computed for each recommender. Later,
we describe how these results are aggregated.

Let M be one such recommender. The recommender M may or may not have a trust relationship
with trustee B regarding context ¢. The truster 4 can provide a questionnaire to the recommender.
The recommender is allowed to use the values +1, -1, 0, or L in filling this questionnaire. The
value +1 indicates belief, -1 indicates disbelief, 0 indicates neutral, and L indicates unknown.
The number of Ls with respect to the total number of values will give a measure of uncertainty.
The ratio of the number of +1s together with half the number of 0s to the total number of values
gives the value for belief. The ratio of the number of -1s together with half the number of Os to
the total number of values gives the value for disbelief. If the recommender does not return a
recommendation, the truster uses the triple (0,0,1) as a recommendation from M.
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The truster 4 will have a trust relationship with the recommender M. The context of this trust
relationship will be to act “reliably to provide a service (recommendation, in this case)”. This trust
relationship will affect the opinion of the recommendation provided by the recommender. The
truster scales the recommender’s opinion about the trustee with this trust value. Scaling the rec-
ommendation score based on the trust relationship between the truster and the recommender has
one important benefit. Suppose that the recommender tells a lie about the trustee in the recom-
mendation in order to gain an advantage with the truster. If the truster does not have belief on the
recommender to a great degree then the belief on the recommendation will be low with the truster.
Note also that if the truster disbelieves a recommender to properly provide a recommendation, it
will most likely not ask for the recommendation.

The trust relationship that truster 4 has with trustee M in the context of providing a recom-
mendation is represented as a 3 x 3 matrix. The rows of the matrix correspond to experience,
knowledge, and recommendation and the columns correspond to belief, disbelief, and uncertainty.
This matrix is normalized as outlined in Section 5.1.4 and converted into a triple of the form
(b,d,u). This triple will be used for the scaling operation.

To do this scaling, we borrow the concept of “discounting™ proposed by Jesang [27, 28]. Ac-
cording to his proposition, if the recommender M disbelieves the trustee B or is uncertain about
B, then A also disbelieves B or is uncertain about B to the extent scaled down by 4’s belief on M.
Also, A’s disbelief and uncertainty about M’s opinion contribute towards A’s uncertainty about B.
If M sends the triple ysbp, smdp, amup as a recommendation about B, and A4 has the trust on M as
(abar, adu, aun), then the recommendation yR5 of a recommender M for an entity B to the truster
A in a context c is given by (4pbh, 4mdR, anub). The values of 4ub%, amdf, aruf computed as
per Josang’s formula is:

R
Ambg =4 by Xarbp
AMAR =4 by X prdp
AMUS =4 dyg g ung 44 by X pup

Recall that the truster 4 may get recommendations about the trustee B from many different
recommenders. Then A’s belief on the recommendation about B is the average of the belief values
of all recommendations and A’s disbelief 1s the average of the disbelief values of the recommen-
dations. The same is true for 4’s uncertainty about the recommendations. Therefore, if y is a
group of n recommenders then 4ybg = ggilrflbﬁ, AydR = Z""El';‘—iqﬁ and qyug = &‘”ﬂﬁ Hence, the

recommendation component is expressed by the triple (4ybr, 4ydr, AyUr).
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5.1.4 Normalization of Trust Vector

Having determined the triples for each component of trust we specify the simple trust relationship
between the truster 4 and the trustee B in a context ¢ at time 7 as

bE dE Ug
(4—=B)=| bx dk ux (5.1)
Axbe AwdR AyUR

Given the same set of values for the factors that influence trust, two trusters may come up with
two different trust for the same trustee because they may assign different weights to the different
factors that influence trust. Which particular component needs to be emphasized more than the
others, is a matter of trust evaluation policy of the truster. The policy is represented by the truster
as a trust policy vector.

Definition 4 The trust policy vector, 4W§, is a vector that has the same number of components
as the simple-trust vector. The elements are real numbers in the range [0,1] and the sum of all
elements is equal to 1.

The elements of this vector are weights corresponding to the parameters of trust relationship. Let
(4 — B), be the simple trust relationship between truster 4 and trustee B in context c at time 7. Let
also 4W§ = [Wg, Wk, Wg] be the corresponding trust evaluation policy vector elements such that
Wg +Wg + Wg =1 and Wg, W, Wg € [0,1]. Therefore, the normalized trust relationship between
a truster 4 and a trustee B at a time ¢ and for a particular context c is given by

(4B = ,Wix(4-—B),
bg dg  ug
(We Wi, Wg) x | bk dx  ux
AybrR  aydR  ayur

= (484, 4d5, at§y)

where b5 = Wi x bg + Wi x bx + Wg X ay br, 4dg=Wg x dg+ W x dx +Wg X4y dg, atly=
Wg Xug + Wy xug +Wp X gy ug.

It follows from above that each element AE;, ,,Zig, A{tg of the normalized trust relationship lies
within [0,1] and 455 + 4d§ + 415 = 1.

5.2 Reasoning about Trust Relationships in Different Contexts

The model we have described so far has two shortcomings that needs to be overcome if the model
is to be useful for real-world applications. First, it is not possible to compute a useful trust vector if
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the truster does not have any experience, knowledge, or recommendation about a trustee in a given
context. The model returns the vector (0,0, 1) — total uncertainty. Second, the model developed
so far can reason about trust relationships only with respect to a given context. In other words, it
allows trust vectors to be compared only when there is an exact match on the context. These two
shortcomings must be removed in order to make the trust model useful for pervasive computing
applications. We remove these problems by formalizing the notion of context and describing the
relationships that exist between different contexts.

Definition 5 A context C; is represented by a set of keywords denoted by KeywordSet ..

Each keyword in KeywordSet, is used to describe the context C;. The keywords in KeywordSet,
are semantically equivalent because they express the same context. For each context C, we require
that the KeywordSet should be non-empty and finite. For any two distinct contexts ¢ and ¢’,
KeywordSet . N KeywordSet» = {}. In other words, any keyword belongs to exactly one context.
An example will help illustrate the notion of contexts. The context age can be expressed by the
keywords {age, yearOfBirth}.

Consider the two contexts doing a job and doing a job well. Modeling them as distinct concepts
increases the total number of contexts that must be managed. To solve this problem, we specify
doing a job as a context and associate a set of values with it. The values in this case will be
{badly,neutral ,well}. Using these values, we can specify different conditions on the context.
Each of these conditions represent a derived context. To obtain a derived context from the context
Ci, each keyword &, where k € KeywordSet,, must be associated with a domain Dy, that defines the
set of values associated with the keyword. The formal definition of derived context appears below.

Definition 6 A derived context D C; is one that is specified by a condition & op v defined over a
context C; where k € KeywordSet., and v € D; and op is a logical operator compatible with the
domain of Dy.

To check whether two derived contexts specified using conditions on different keywords are
equivalent, we need the notion of translation functions.

Definition 7 The translation function associated with a context C;, denoted as TF,, is a total func-
tion that takes as input a condition k op v (k € KeywordSet,) and a keyword k' (K € KewordSet,)
and produces an equivalent condition defined over keyword k. This is formally expressed as fol-
lows. TF, : Cond, x KeywordSet, — Cond, where Condp, is the set of all valid conditions
specified over the keywords in KeywordSet,,.

Since the translation function is total, for every given valid condition and keyword there exists
an equivalent condition defined on the given keyword. Several steps are involved in developing
the translation function. To express k op v in terms of &/, we need to first convert the value & to an
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equivalent value that is in the domain of &’ This step is performed by conversion functions which
convert the value of one keyword to an equivalent value of another keyword. The second step is to
convert the operator op into an equivalent operator op’ that is suitable for the domain of ¥’. The
definition of the conversion function together with the domain of the keyword can determine how
the operator must be changed.

Consider the two keywords age and yearOfBirth. Suppose we want to translate age > 18 to an
equivalent condition defined over yearOfBirth. The first step is to convert age = 18 to an equivalent
value defined over yearOfBirth. The function that converts age to yearO fBirth will be specified
as: yearQfBirth = currentYear — age. For age = 18, this function returns yearOfBirth = 1987.
Since yearOfBirth and age are inversely related, (that is, age increases as yearO fBirth decreases)
the operator > is inverted to obtain <. The results obtained by the TF, function in this case will
be yearOfBirth < 1987.

5.2.1 Relationships between Contexts

We now describe two kinds of relations that may exist between distinct contexts. One is the gen-
eralization/specialization relationship existing between related contexts. The other is the composi-
tion relationship between possibly unrelated contexts.

Specialization Relation

Distinct contexts may be related by the specialization relationship. The specialization relation 1s
anti-symmetric and transitive. We use the notation ¢; C C; to indicate that the context C; is a
generalization of context C;. Alternately, context C; is referred to as the specialization of context
Ci. For instance, the contexts makes decision and makes financial decisions are related by the
specialization relationship, that is, makes decisions C makes financial decisions. Also, makes
Sfinancial decisions C makes payment decisions. By transitivity, makes decisions C makes payment
decisions.

Each specialization relationship is associated with a degree of specialization. This indicates
the closeness of the two concepts. For instance, makes payment decisions is a specialization of
makes decision, and makes payment decisions is also a specialization of makes financial decisions.
However, the degree of specialization is different in the two cases. makes payment decision is
closer to makes financial decision than makes decision. The degree of specialization captures this
difference. Since two contexts related by specialization will not be exactly identical, the degree
of specialization will be denoted as a fraction. The exact value of the fraction will be determined
using domain knowledge.
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Composition Relation

Specialization captures the relationship between contexts that are related. Sometimes unrelated
contexts can be linked together using the composition relation. We now describe this composition
relation. A context in our model can either be an elementary context or a composite context. An
elementary context is one which cannot be subdivided into other contexts. A composite context is
one that is composed from other contexts using the logical and operation. The individual contexts
that form a composite contexts are referred to as the component contexts. A component context
can either be composite or elementary.

We use the notation ¢; < (; to indicate that the context C; is a component of context C;. In
such cases, (; is referred to as the component context and C; is the composite context. For instance,
we may have the component contexts secure key generation and secure key distribution that can be
combined to form the composite context secure key generation and distribution. This is denoted
as secure key generation < secure key generation and distribution.

Sometimes a composite context ¢; may be composed from the individual contexts C;, Cx and
Cm- All these contexts may not contribute equally to form ¢;. The degree of composition captures
this idea. A degree of composition is associated with each composition relation. Since two contexts
related by composition will not be exactly identical, the degree of composition is denoted as a
fraction. The sum of all these fractions equals one if C; is composed of Cj, Cx, and Cp, only. If
Ci is composed of Cj, Cx, and C» and also other component contexts, then the sum of fractions
associated with C;, ¢, and ¢, must be equal to or less than one. The exact value of the fraction
representing the degree of composition will be determined by domain knowledge.

Context Graphs

The specialization and the composition relations can be described using one single graph which
we refer to as the context graph. Each node n; in this graph corresponds to a context. There
are two kinds of weighted edges in this graph: composition edges and specialization edges. A
composition edge (n;,n;), denoted by a solid arrow from node »; to node 7, indicates that the
context represented by node »; is a component of the context represented by node »;. The weight
on this edge indicates what percentage of the component context comprises the composite context.
A specialization edge (71,,n,), shown by a dashed arrow from node 7, to node n,, indicates that
the context represented by node 7, is a specialization of the context represented by node ;. The
weight on the edge indicates the degree of specialization of a context.

Unrelated contexts correspond to nodes in different context graphs. Each context corresponds
to only one node in the set of context graphs. We denote the context graph associated with context
Ci as CG . The formal definition of a context graph is as follows.

Definition 8 A context graph ¢ G = (N, E. U E;) is a weighted directed acyclic graph satisfying
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the following conditions.

o AL is a set of nodes where each node #; is associated with a context ¢; and is labeled with
KeywordSet,. KeywordSet, is the set of keywords associated with the context ¢;.

e The set of edges in the graph can be partitioned into two sets £, and ;. For each edge (m;,n;)
€ Ec, the context ¢; corresponding to node #; is a component of the concept C; corresponding
to node n;. The weight of the edge (n;,n;), denoted by w(n;,n;), indicates the percentage
of component context that makes up the composite context. For each edge (n;,n;) € ;, the
concept C; corresponding to node #; is a specialization of concept C; corresponding to node
n;. Here again the weight of the edge (n;,n;), denoted by w(n;,n;), indicates the degree of
specialization.
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Figure 5.1: Specialization and composition relationships

Figure 5.1 gives an example of a context graph that is associated with the context cryptographic
key establishment. The solid arrows in this graph indicate composition relationships and the dashed
arrows indicate generalization/specialization relationships. The context cryptographic key estab-
lishment can have two specializations, namely, symmetric key establishment and asymmetric key
establishment. The weight on the edge connecting this symmetric key establishment with crypto-
graphic key establishment indicates the degree of specialization. For instance, if symmetric key
establishment is very closely related to key establishment, the degree of specialization may be la-
beled as %. Similarly, the edge connecting asymmetric key establishment to key establishment may
be labeled as % Each of these specific contexts is a composition of some component contexts.
Generation and distribution of symmetric keys has three components — key generation, key distri-
bution, and key agreement. A weight of % can be assigned to each of these components contexts.
Similarly, generation and distribution of asymmetric keys can have components key generation and
key distribution with weights % each.
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A component context can also be a generalization of some specialized contexts. In the above
example the context key distribution has two categories — manual key distribution and electronic
key distribution. Similarly key distribution in asymmetric keys can be thought of as generalization
of static public key distribution and ephemeral public key distribution.

5.2.2 Computing the Degree of Specialization and Composition

Consider two contexts ¢; and C; where ¢; C Cj, that is, C; is a specialization of ¢;. The degree of
specialization is computed as follows. Let n;, n; be the nodes corresponding to contexts ¢; and C;
in the weighted graph. Let the path from #; to »n; consisting of specialization edges be denoted as
(niyniy1,mi42,...,nj-1,n;). The degree of specialization = I'I;;;:.
our notion that the similarity decreases as the length of the path from the generalized node to the

w(np,npy1). This corresponds to

specialized node increases. Note that, in real world there may be multiple paths from ¢; to ¢;. In
such cases, it is important that the degree of specialization yield the same values when any of these
paths are used for computation.

Consider two contexts ¢; and C; such that C; is a component of ¢;. Degree of composition
captures what portion of ¢; is made up of C;. The degree of composition is computed as follows.
Let n;, n ; be the nodes corresponding to contexts ¢; and C; in the context graph. Let there be
m paths consisting of composition edges from n; to n;. Let the gth path (1 < g < m) from n; to
n; be denoted as (n;,niq+| sPigk2,- -+, Mj,—1,n;). The degree of composition = Z;":] (w(niyni41) x

jo—2
w(njq_l,nj) X I'I;;i:iq“w(np,np“)).

5.2.3 Relationships between Context Graphs

Different information sources may use different context graphs. Comparing information or com-
bining information that uses different context graphs may not give correct results. Before pro-
ceeding with the comparison of information obtained from different sources, the context graphs
of these sources must be merged. Note that, sometimes context graphs cannot be merged because
they contain conflicting information. To understand why this happens, we first need to elaborate
on the relationships that can exist between a pair of context graphs. Two context graphs can be
related by any of the following relationships: (i) equality, (ii) unrelated, (iii) subsumes, and (iv)
incomparable.

Intuitively, two context graphs are equal if they have the same set of nodes, composition edges,
and specialization edges. Moreover, each of these edges must have identical weights in the two
graphs. Sometimes two context graphs are unrelated. They do not have any common context. It is
conceivable that these graphs will be used for different situations. Often times two context graphs
are comparable but one has more information than the other. In such cases, the context graphs are
related by the subsumes relation. Often times two context graphs, neither of which subsumes the
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other, may be comparable. Such graphs contain different but related information. Moreover, they
never have any conflicting information. Such graphs can be merged without human intervention.
Two context graphs that are not unrelated are incomparable if they are not comparable. Incompara-
ble graphs occur when the underlying assumptions are different. Since the conflicts are generated
because of the differences in the underlying assumptions, they cannot be resolved without human

intervention.
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Figure 5.2: Unrelated context graphs
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Figure 5.3: Context graphs having subsumes relation

When a truster 4 cannot determine the values related to his trust relationship with trustee B
for a context ¢, the values can be obtained from one or more related contexts, say, ;. We use
the component values of the individual parameters recommendation, experience, and knowledge
from ¢; and use these to compute the trust vector for €. Note that, a context ¢ may be related to
many other contexts, say, C;, Cj, and C. Here it is important to choose the closest related context
from this set and use it for extrapolation. The details of reasoning about trust in the presence of
incomplete information appears in our related papers [40, 41].
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5.2.4 Combining Trust Vectors for Collaborations

Ad hoc collaborations such as those frequently occurring in pervasive computing applications,
typically involve many cooperative entities in a relationship within a specific context. Combination
of trust is needed for the interoperability of these cooperating agents. Whenever a group of agents
are working together, combining their individual trust relationships is necessary to have an idea
about the expected behavior of the group. Keeping this in mind we define combination operators
for trust relationships. Different possibilities like one-to-many, many-to-one, and many-to-many
relationships are addressed. We also formalize the effect of reconfiguration of these groups on the
corresponding trust relationships. As in the comparison operation between trust relationships, we
assume that the contexts of the trust relationships are the same. If needed and possible, we can
extrapolate trust relationships as per section 5.2.3.

Trust relationship between a truster and a group of trustee

In real life, we often encounter situations where we have to take decisions based on information
coming from different sources. Consider the scenario where an entity has existing trust relation-
ships with different service providers for a particular service. The truster expects some service
which is provided collectively by the service providers. The truster has some expectation from
each individual provider. To have an idea about the service provided by the group, the combined
trust of the service providers needs to be estimated. Therefore, the receiver needs a mechanism
to combine the existing trust relationships to estimate an initial composite trust relationship. The
group of service providers is considered as a single entity (trustee). Once the combination is done,
the truster no longer considers the trust relationships with individual trustee. The truster begins
with the combined group as a single entity and subsequently a trust relationship with the group
evolves. We use the disjunction operator of subjective logic to define an initial trust relationship
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between a truster and the group.

Assume a truster 4 has trust relationships 7" = (4 i»B)ﬁ,’ =(b-T,d-T,u-T)and T' = (4 —
C)N =(b-T',d-T',u-T") with two trustees B and C at the same time 1, and in the same context c.
A decides to have a trust relat<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>